ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "9373555e-4965-4ddf-bb0c-c11bf4cf670f"}, "_deposit": {"id": "12080", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12080"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012080", "sets": []}, "author_link": ["36990"], "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1992-10-30", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "6", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "27", "bibliographic_titles": [{"bibliographic_title": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]}, "item_10_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "In the last paper [1] we show the local classification of generic curve families defined by symmetric bilinear forms on a compact 2-dimensional Riemannian manifold M. Here we give the definition of generic symmetric bilinear forms similarly to the definition of a Morse-Smale vector field in flows on M. The Morse-Smale theory is shown in [2],[3],[4],[5]. And we show that generic symmetric bilinear forms make open, dense and structural stable subset in bilinear forms on M.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8\uff1amime\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 27(1): 1-6(1992)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]}, "item_10_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00697923", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "01"}]}, "item_1627890569677": {"attribute_name": "\u51fa\u7248\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "KAMIYA,  Hisao"}], "nameIdentifiers": [{"nameIdentifier": "36990", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Science27-01-01.pdf", "filesize": [{"value": "252.5 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 252500.0, "url": {"label": "Science27-01-01.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12080/files/Science27-01-01.pdf"}, "version_id": "134ccccd-40c9-4a88-8201-90bd84fc8f0d"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Generic curve families on 2-dimensional manifold", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Generic curve families on 2-dimensional manifold", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["1169/1171/1172/1192"], "permalink_uri": "http://hdl.handle.net/10091/10614", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2010-10-06"}, "publish_date": "2010-10-06", "publish_status": "0", "recid": "12080", "relation": {}, "relation_version_is_last": true, "title": ["Generic curve families on 2-dimensional manifold"], "weko_shared_id": -1}
  1. 040 理学部
  2. 0402 紀要
  3. 04021 Journal of the Faculty of Science, Shinshu University
  4. Vol. 27

Generic curve families on 2-dimensional manifold

http://hdl.handle.net/10091/10614
713b682e-fa4f-4173-836e-179421e24e11
名前 / ファイル ライセンス アクション
Science27-01-01.pdf Science27-01-01.pdf (252.5 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2010-10-06
タイトル
言語 en
タイトル Generic curve families on 2-dimensional manifold
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 KAMIYA, Hisao

× KAMIYA, Hisao

WEKO 36990

KAMIYA, Hisao

Search repository
出版者
出版者 信州大学理学部
引用
内容記述タイプ Other
内容記述 信州大学理学部紀要 27(1): 1-6(1992)
書誌情報 信州大学理学部紀要

巻 27, 号 1, p. 1-6, 発行日 1992-10-30
抄録
内容記述タイプ Abstract
内容記述 In the last paper [1] we show the local classification of generic curve families defined by symmetric bilinear forms on a compact 2-dimensional Riemannian manifold M. Here we give the definition of generic symmetric bilinear forms similarly to the definition of a Morse-Smale vector field in flows on M. The Morse-Smale theory is shown in [2],[3],[4],[5]. And we show that generic symmetric bilinear forms make open, dense and structural stable subset in bilinear forms on M.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0583-063X
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00697923
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:35:21.466520
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio