ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "74d6227f-d2c7-4bc0-875d-503027dbdb6b"}, "_deposit": {"id": "12977", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12977"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012977"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1972-07-25", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "42", "bibliographicPageStart": "23", "bibliographicVolumeNumber": "32", "bibliographic_titles": [{"bibliographic_title": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8\u7d00\u8981"}]}]}, "item_10_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "The present article will give a Fadle eigenfunction analysis of rectangular plates in flexure by means of complex matrix algebra. Rectangular plates have many structural applications, and their flexural analysis is thus of considerable importance. The solution of the flexural problems of classical elasticity generally involves the satisfaction of the homogeneous biharmonic equation and the imposed boundary conditions. Although these boundary value problems have been the subject of many investigators and the literature is replete with numerous solu-tions, many problems of practical interest have not been solved with respect to the actual imposed boundary conditions. Fadle and Papkovitch were the first to present a method for solving rectangular plate problems by the use of complex biharmonic eigenfunction. The utility of a representation in terms of a Fadle eigenfunction series is contingent on the ability to express arbitrary functions in terms of the series. Each term of a series of these functions satisfies the governing differential equation (nabla)4w = 0 and certain homogeneous boundary conditions on two parallel edges identically. In addition, each term of the general eigenfunction series, when written for finite rectangular plates, contains two arbitrary complex constants which can be used to satisfy arbitrary boundary conditions on the remaining two edges. Thus, the use of these eigenfunction permits the simultaneous satisfaction of the boundary conditions on all four sides of the rectangular plate. An approximate expansion formula is developed and applied to the flexural rectangular plate problem. The analysis can be made for complex quantitiesas as these appear, and needs not to separate real parts from imaginary ones, because these can be evaluated numerically with digital computers.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8\uff1amime\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8\u7d00\u8981 32: 23-42 (1972)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8"}]}, "item_10_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AN00121228", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "03"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "ISHIKAWA,  Kiyoshi"}], "nameIdentifiers": [{"nameIdentifier": "39761", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "NATSUME,  Shotaro"}], "nameIdentifiers": [{"nameIdentifier": "39762", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "TANIMOTO,  Bennosuke"}], "nameIdentifiers": [{"nameIdentifier": "39763", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Engineering32-03.pdf", "filesize": [{"value": "733.8 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 733800.0, "url": {"label": "Engineering32-03.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12977/files/Engineering32-03.pdf"}, "version_id": "101aea7a-8879-4e8a-9e0d-859801f31af2"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Complex Eigenfunction Method for Bending Analysis of Rectangular Plates", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Complex Eigenfunction Method for Bending Analysis of Rectangular Plates"}]}, "item_type_id": "10", "owner": "1", "path": ["1221/1223/1224/1275"], "permalink_uri": "http://hdl.handle.net/10091/11757", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2011-02-15"}, "publish_date": "2011-02-15", "publish_status": "0", "recid": "12977", "relation": {}, "relation_version_is_last": true, "title": ["Complex Eigenfunction Method for Bending Analysis of Rectangular Plates"], "weko_shared_id": null}
  1. 060 工学部
  2. 0602 紀要
  3. 06021 信州大学工学部紀要
  4. Vol. 32

Complex Eigenfunction Method for Bending Analysis of Rectangular Plates

http://hdl.handle.net/10091/11757
73cb8150-26ee-49c9-9b7b-871d80eaa3dd
名前 / ファイル ライセンス アクション
Engineering32-03.pdf Engineering32-03.pdf (733.8 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2011-02-15
タイトル
タイトル Complex Eigenfunction Method for Bending Analysis of Rectangular Plates
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 ISHIKAWA, Kiyoshi

× ISHIKAWA, Kiyoshi

WEKO 39761

ISHIKAWA, Kiyoshi

Search repository
NATSUME, Shotaro

× NATSUME, Shotaro

WEKO 39762

NATSUME, Shotaro

Search repository
TANIMOTO, Bennosuke

× TANIMOTO, Bennosuke

WEKO 39763

TANIMOTO, Bennosuke

Search repository
出版者
出版者 信州大学工学部
引用
内容記述タイプ Other
内容記述 信州大学工学部紀要 32: 23-42 (1972)
書誌情報 信州大学工学部紀要

巻 32, p. 23-42, 発行日 1972-07-25
抄録
内容記述タイプ Abstract
内容記述 The present article will give a Fadle eigenfunction analysis of rectangular plates in flexure by means of complex matrix algebra. Rectangular plates have many structural applications, and their flexural analysis is thus of considerable importance. The solution of the flexural problems of classical elasticity generally involves the satisfaction of the homogeneous biharmonic equation and the imposed boundary conditions. Although these boundary value problems have been the subject of many investigators and the literature is replete with numerous solu-tions, many problems of practical interest have not been solved with respect to the actual imposed boundary conditions. Fadle and Papkovitch were the first to present a method for solving rectangular plate problems by the use of complex biharmonic eigenfunction. The utility of a representation in terms of a Fadle eigenfunction series is contingent on the ability to express arbitrary functions in terms of the series. Each term of a series of these functions satisfies the governing differential equation (nabla)4w = 0 and certain homogeneous boundary conditions on two parallel edges identically. In addition, each term of the general eigenfunction series, when written for finite rectangular plates, contains two arbitrary complex constants which can be used to satisfy arbitrary boundary conditions on the remaining two edges. Thus, the use of these eigenfunction permits the simultaneous satisfaction of the boundary conditions on all four sides of the rectangular plate. An approximate expansion formula is developed and applied to the flexural rectangular plate problem. The analysis can be made for complex quantitiesas as these appear, and needs not to separate real parts from imaginary ones, because these can be evaluated numerically with digital computers.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0037-3818
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00121228
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:13:49.886887
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio