ログイン
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 080 繊維学部
  2. 0801 学術論文

Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions

http://hdl.handle.net/10091/00018624
http://hdl.handle.net/10091/00018624
d0af0d14-b274-444a-9fae-18dbd02e270d
名前 / ファイル ライセンス アクション
Two-way_ANOVA_scalar_trajectories_experimental_evidence.pdf Two-way_ANOVA_scalar_trajectories_experimental_evidence.pdf (1.4 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2016-02-04
タイトル
タイトル Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions
言語
言語 eng
DOI
関連識別子 https://doi.org/10.1016/j.jbiomech.2014.10.013
関連名称 10.1016/j.jbiomech.2014.10.013
キーワード
主題 Kinematics, Statistical parametric mapping, Random field theory, Time series analysis
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
著者 Pataky, Todd C.

× Pataky, Todd C.

Pataky, Todd C.

Search repository
Vanrenterghem, Jos

× Vanrenterghem, Jos

Vanrenterghem, Jos

Search repository
Robinson, Mark A.

× Robinson, Mark A.

Robinson, Mark A.

Search repository
出版者
出版者 ELSEVIER SCI LTD
引用
内容記述 JOURNAL OF BIOMECHANICS. 48(1):186-189 (2015)
書誌情報 JOURNAL OF BIOMECHANICS

巻 48, 号 1, p. 186-189, 発行日 2015-01-02
抄録
内容記述 Kinematic and force trajectories are often normalized in time, with mean and variance summary statistic trajectories reported. It has been shown elsewhere, for simple one-factor experiments, that statistical testing can be conducted directly on those summary statistic trajectories using Random Field Theory (RFT). This technical note describes how RFT extends to two-factor designs, and how bizarre "non-phasic interactions" can occur in multi-factor experiments. We reanalyzed a public dataset detailing stance phase knee flexion during walking in (a) patellofemoral pain vs. controls, and (b) females vs. males using both a full model (with interaction effect) and a main-effects-only model. In both models the main effect of PAIN failed to reach significance at alpha=0.05. The main effect of GENDER reached significance over 5-40% stance (p=0.0005), but only for the full model. The interaction effect (in the full model) reached significance over 0-15% of stance (p=0.030), and resulted from greater flexion in females but decreased flexion in males in PFP vs. controls. Thus there was a non-phasic interaction in which a non-significant interaction (over 20-40% stance) suppressed the main effect of GENDER. Similarly, if we had only analyzed 20-40% stance, we would have committed Type II error by failing to reject the null PAIN-GENDER interaction hypothesis. The possible presence of non-phasic interactions implies that trajectory analyses must be conducted at the whole-trajectory level, because a failure to do so will generally miss non-phasic interactions if present. (C) 2014 Elsevier Ltd. All rights reserved.
資源タイプ(コンテンツの種類)
ISSN
収録物識別子タイプ ISSN
収録物識別子 0021-9290
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00694200
PubMed
識別子タイプ PMID
関連識別子 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed&term=25458576
関連名称 25458576
権利
権利情報 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
WoS
URL http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000348336200027
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 08:39:34.392014
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Pataky, Todd C., Vanrenterghem, Jos, Robinson, Mark A., 2015, Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions: ELSEVIER SCI LTD, 186–189 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3