WEKO3
アイテム
{"_buckets": {"deposit": "bbf28e8d-d8bd-480a-a820-53750815f8c6"}, "_deposit": {"id": "20487", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "20487"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00020487", "sets": ["1222"]}, "author_link": ["107514", "107515"], "item_1628147817048": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_6_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2014", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageStart": "JFST0031", "bibliographicVolumeNumber": "9", "bibliographic_titles": [{"bibliographic_title": "Journal of Fluid Science and Technology"}]}]}, "item_6_description_20": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "The lattice Boltzmann method for two-phase flows containing a deformable body with a viscoelastic membrane is improved to simulate circular pipe flows by incorporation of the immersed boundary method. In order to examine the validity of the red blood cell (RBC) model, the method is applied to the motion of a biconcave disk-shaped body in a pressure-driven circular pipe flow. The validation is demonstrated by investigating the relation between the deformation index and terminal axial velocity of the RBC in the pipe flow. In this study, the behavior of a biconcave disk-shaped body in constricted pipe flows is simulated under various geometrical conditions. The square and circular pipes with various lengths and sizes of the constriction are considered, and the flow is induced by the pressure difference between the inlet and outlet. From the results, it is found that as the length of the constriction becomes smaller, the body is deformed larger and accelerated at the entrance and exit in the constriction, although the speed of the body is reduced while passing through the constriction. Also, it is found that as the size of the constriction becomes larger, the deformation index linearly decreases and the axial velocity exponentially increases. These results indicate that the present method has applicability to simulation of the motion of RBCs in microscale capillary blood vessels.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "資源タイプ(コンテンツの種類)", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "引用", "attribute_value_mlt": [{"subitem_description": "Journal of Fluid Science and Technology.9(3):JFST0031(2014)", "subitem_description_type": "Other"}]}, "item_6_link_3": {"attribute_name": "信州大学研究者総覧へのリンク", "attribute_value_mlt": [{"subitem_link_text": "YOSHINO, Masato", "subitem_link_url": "http://soar-rd.shinshu-u.ac.jp/profile/ja.ONkpbpkh.html"}, {"subitem_link_text": "http://soar-rd.shinshu-u.ac.jp/profile/ja.uayebUkh.html", "subitem_link_url": "http://soar-rd.shinshu-u.ac.jp/profile/ja.uayebUkh.html"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000219951500010"}]}, "item_6_publisher_4": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "The Japan Society of Mechanical Engineers"}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.1299/jfst.2014jfst0031"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1299/jfst.2014jfst0031", "subitem_relation_type_select": "DOI"}}]}, "item_6_rights_62": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "© The Japan Society of Mechanical Engineers"}]}, "item_6_select_64": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1880-5558", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1880-5558", "subitem_source_identifier_type": "ISSN"}]}, "item_6_text_69": {"attribute_name": "wosonly authkey", "attribute_value_mlt": [{"subitem_text_value": "Lattice Boltzmann method; Immersed boundary method; Two-phase flow; Red blood cell; Viscoelastic membrane; Circular pipe; Constriction"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "The lattice Boltzmann method for two-phase flows containing a deformable body with a viscoelastic membrane is improved to simulate circular pipe flows by incorporation of the immersed boundary method. In order to examine the validity of the red blood cell (RBC) model, the method is applied to the motion of a biconcave disk-shaped body in a pressure-driven circular pipe flow. The validation is demonstrated by investigating the relation between the deformation index and terminal axial velocity of the RBC in the pipe flow. In this study, the behavior of a biconcave disk-shaped body in constricted pipe flows is simulated under various geometrical conditions. The square and circular pipes with various lengths and sizes of the constriction are considered, and the flow is induced by the pressure difference between the inlet and outlet. From the results, it is found that as the length of the constriction becomes smaller, the body is deformed larger and accelerated at the entrance and exit in the constriction, although the speed of the body is reduced while passing through the constriction. Also, it is found that as the size of the constriction becomes larger, the deformation index linearly decreases and the axial velocity exponentially increases. These results indicate that the present method has applicability to simulation of the motion of RBCs in microscale capillary blood vessels."}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "YOSHINO, Masato"}], "nameIdentifiers": [{"nameIdentifier": "107514", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KATSUMI, Shingo"}], "nameIdentifiers": [{"nameIdentifier": "107515", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-02-22"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "26420105_07.pdf", "filesize": [{"value": "1.6 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensefree": "© The Japan Society of Mechanical Engineers", "licensetype": "license_note", "mimetype": "application/pdf", "size": 1600000.0, "url": {"label": "26420105_07.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/20487/files/26420105_07.pdf"}, "version_id": "2e0b0e4b-fd1d-42e7-94d5-9f625fe63802"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Lattice Boltzmann method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Immersed boundary method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Two-phase flow", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Red blood cell", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Viscoelastic membrane", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Circular pipe", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Constriction", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Lattice Boltzmann simulation of motion of red blood cell in constricted circular pipe flow", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Lattice Boltzmann simulation of motion of red blood cell in constricted circular pipe flow", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["1222"], "permalink_uri": "http://hdl.handle.net/10091/00021245", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-02-22"}, "publish_date": "2019-02-22", "publish_status": "0", "recid": "20487", "relation": {}, "relation_version_is_last": true, "title": ["Lattice Boltzmann simulation of motion of red blood cell in constricted circular pipe flow"], "weko_shared_id": -1}
Lattice Boltzmann simulation of motion of red blood cell in constricted circular pipe flow
http://hdl.handle.net/10091/00021245
http://hdl.handle.net/10091/0002124590cc259b-7970-4b26-bcae-045f408bca49
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2019-02-22 | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | Lattice Boltzmann simulation of motion of red blood cell in constricted circular pipe flow | |||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Lattice Boltzmann method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Immersed boundary method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Two-phase flow | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Red blood cell | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Viscoelastic membrane | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Circular pipe | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Constriction | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
著者 |
YOSHINO, Masato
× YOSHINO, Masato× KATSUMI, Shingo |
|||||
信州大学研究者総覧へのリンク | ||||||
氏名 | YOSHINO, Masato | |||||
URL | http://soar-rd.shinshu-u.ac.jp/profile/ja.ONkpbpkh.html | |||||
信州大学研究者総覧へのリンク | ||||||
氏名 | http://soar-rd.shinshu-u.ac.jp/profile/ja.uayebUkh.html | |||||
URL | http://soar-rd.shinshu-u.ac.jp/profile/ja.uayebUkh.html | |||||
出版者 | ||||||
出版者 | The Japan Society of Mechanical Engineers | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | Journal of Fluid Science and Technology.9(3):JFST0031(2014) | |||||
書誌情報 |
Journal of Fluid Science and Technology 巻 9, 号 3, p. JFST0031, 発行日 2014 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The lattice Boltzmann method for two-phase flows containing a deformable body with a viscoelastic membrane is improved to simulate circular pipe flows by incorporation of the immersed boundary method. In order to examine the validity of the red blood cell (RBC) model, the method is applied to the motion of a biconcave disk-shaped body in a pressure-driven circular pipe flow. The validation is demonstrated by investigating the relation between the deformation index and terminal axial velocity of the RBC in the pipe flow. In this study, the behavior of a biconcave disk-shaped body in constricted pipe flows is simulated under various geometrical conditions. The square and circular pipes with various lengths and sizes of the constriction are considered, and the flow is induced by the pressure difference between the inlet and outlet. From the results, it is found that as the length of the constriction becomes smaller, the body is deformed larger and accelerated at the entrance and exit in the constriction, although the speed of the body is reduced while passing through the constriction. Also, it is found that as the size of the constriction becomes larger, the deformation index linearly decreases and the axial velocity exponentially increases. These results indicate that the present method has applicability to simulation of the motion of RBCs in microscale capillary blood vessels. | |||||
資源タイプ(コンテンツの種類) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1880-5558 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1299/jfst.2014jfst0031 | |||||
関連名称 | 10.1299/jfst.2014jfst0031 | |||||
権利 | ||||||
権利情報 | © The Japan Society of Mechanical Engineers | |||||
出版タイプ | ||||||
出版タイプ | AM | |||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||
WoS | ||||||
表示名 | Web of Science | |||||
URL | http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000219951500010 |