ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "651e738f-1606-4d29-b243-1c759039773c"}, "_deposit": {"id": "20887", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "20887"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00020887", "sets": ["310:311"]}, "author_link": ["108562"], "control_number": "20887", "item_1628147817048": {"attribute_name": "\u51fa\u7248\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_6_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2019-04", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageEnd": "360", "bibliographicPageStart": "339", "bibliographicVolumeNumber": "82", "bibliographic_titles": [{"bibliographic_title": "METRIKA"}]}]}, "item_6_description_19": {"attribute_name": "\u5185\u5bb9\u8a18\u8ff0", "attribute_value_mlt": [{"subitem_description": "First Online: 24 September 2018", "subitem_description_type": "Other"}]}, "item_6_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "For an unknown continuous distribution on the real line, we consider the approximate estimation by discretization. There are two methods for discretization. The first method is to divide the real line into several intervals before taking samples (fixed interval method). The second method is to divide the real line using the estimated percentiles after taking samples (moving interval method). In either method, we arrive at the estimation problem of a multinomial distribution. We use (symmetrized) f-divergence to measure the discrepancy between the true distribution and the estimated distribution. Our main result is the asymptotic expansion of the risk (i.e., expected divergence) up to the second-order term in the sample size. We prove theoretically that the moving interval method is asymptotically superior to the fixed interval method. We also observe how the presupposed intervals (fixed interval method) or percentiles (moving interval method) affect the asymptotic risk.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "METRIKA. 82(3):339-360 (2019)", "subitem_description_type": "Other"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000466947700003"}]}, "item_6_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "SPRINGER HEIDELBERG"}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.1007/s00184-018-0683-y"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1007/s00184-018-0683-y", "subitem_relation_type_select": "DOI"}}]}, "item_6_rights_62": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "The final publication is available at link.springer.com"}]}, "item_6_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0026-1335", "subitem_source_identifier_type": "PISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0026-1335", "subitem_source_identifier_type": "PISSN"}]}, "item_6_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00284719", "subitem_source_identifier_type": "NCID"}]}, "item_6_text_69": {"attribute_name": "wosonly authkey", "attribute_value_mlt": [{"subitem_text_value": "f-divergence; Alpha-divergence; Asymptotic risk; Asymptotic expansion; Multinomial distribution"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "For an unknown continuous distribution on the real line, we consider the approximate estimation by discretization. There are two methods for discretization. The first method is to divide the real line into several intervals before taking samples (fixed interval method). The second method is to divide the real line using the estimated percentiles after taking samples (moving interval method). In either method, we arrive at the estimation problem of a multinomial distribution. We use (symmetrized) f-divergence to measure the discrepancy between the true distribution and the estimated distribution. Our main result is the asymptotic expansion of the risk (i.e., expected divergence) up to the second-order term in the sample size. We prove theoretically that the moving interval method is asymptotically superior to the fixed interval method. We also observe how the presupposed intervals (fixed interval method) or percentiles (moving interval method) affect the asymptotic risk."}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Sheena, Yo", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "108562", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-09-24"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "discretized_contin_ver4.pdf", "filesize": [{"value": "284.0 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensefree": "The final publication is available at link.springer.com", "licensetype": "license_note", "mimetype": "application/pdf", "size": 284000.0, "url": {"label": "discretized_contin_ver4.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/20887/files/discretized_contin_ver4.pdf"}, "version_id": "5a95e4af-3aa7-419b-9893-18477f202c18"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "f-divergence", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Alpha-divergence", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Asymptotic risk", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Asymptotic expansion", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multinomial distribution", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Estimation of a continuous distribution on the real line by discretization methods", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Estimation of a continuous distribution on the real line by discretization methods", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["310/311"], "permalink_uri": "http://hdl.handle.net/10091/00021644", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-09-17"}, "publish_date": "2019-09-17", "publish_status": "0", "recid": "20887", "relation": {}, "relation_version_is_last": true, "title": ["Estimation of a continuous distribution on the real line by discretization methods"], "weko_shared_id": 3}
  1. 030 経法学部, 経済学部, 大学院経済・社会政策科学研究科
  2. 0301 学術論文

Estimation of a continuous distribution on the real line by discretization methods

http://hdl.handle.net/10091/00021644
223f5e0a-1583-4216-b429-cc5be6d7a80f
名前 / ファイル ライセンス アクション
discretized_contin_ver4.pdf discretized_contin_ver4.pdf (284.0 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-09-17
タイトル
言語 en
タイトル Estimation of a continuous distribution on the real line by discretization methods
言語
言語 eng
キーワード
主題Scheme Other
主題 f-divergence
キーワード
主題Scheme Other
主題 Alpha-divergence
キーワード
主題Scheme Other
主題 Asymptotic risk
キーワード
主題Scheme Other
主題 Asymptotic expansion
キーワード
主題Scheme Other
主題 Multinomial distribution
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
著者 Sheena, Yo

× Sheena, Yo

WEKO 108562

en Sheena, Yo

Search repository
出版者
出版者 SPRINGER HEIDELBERG
引用
内容記述タイプ Other
内容記述 METRIKA. 82(3):339-360 (2019)
書誌情報 METRIKA

巻 82, 号 3, p. 339-360, 発行日 2019-04
内容記述
内容記述タイプ Other
内容記述 First Online: 24 September 2018
抄録
内容記述タイプ Abstract
内容記述 For an unknown continuous distribution on the real line, we consider the approximate estimation by discretization. There are two methods for discretization. The first method is to divide the real line into several intervals before taking samples (fixed interval method). The second method is to divide the real line using the estimated percentiles after taking samples (moving interval method). In either method, we arrive at the estimation problem of a multinomial distribution. We use (symmetrized) f-divergence to measure the discrepancy between the true distribution and the estimated distribution. Our main result is the asymptotic expansion of the risk (i.e., expected divergence) up to the second-order term in the sample size. We prove theoretically that the moving interval method is asymptotically superior to the fixed interval method. We also observe how the presupposed intervals (fixed interval method) or percentiles (moving interval method) affect the asymptotic risk.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ PISSN
収録物識別子 0026-1335
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00284719
DOI
関連識別子
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s00184-018-0683-y
関連名称
関連名称 10.1007/s00184-018-0683-y
権利
権利情報 The final publication is available at link.springer.com
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
WoS
表示名 Web of Science
URL http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000466947700003
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 07:13:19.356288
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio