WEKO3
アイテム
{"_buckets": {"deposit": "fb2e807b-45aa-44e8-8a1c-c35a71671c0d"}, "_deposit": {"id": "3918", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "3918"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00003918", "sets": ["462"]}, "author_link": ["8002", "8003", "8004", "8005"], "item_1628147817048": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_6_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2009-12-15", "bibliographicIssueDateType": "Issued"}, "bibliographicVolumeNumber": "6", "bibliographic_titles": [{"bibliographic_title": "Retrovirology"}]}]}, "item_6_description_19": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "(c) 2009 Sakurai et al; licensee BioMed Central Ltd. / This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.", "subitem_description_type": "Other"}]}, "item_6_description_20": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Background: DNA double strand break (DSB) repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. Results: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method based on inverse-and Alu-PCR, we analyzed sequences around 3\u0027 HIV-1 integration sites in ATM, Mre11- and NBS1-deficient cells. Increased abnormal junctions between the HIV-1 provirus and the host DNA were found in these mutant cell lines compared to the complemented cell lines and control MRC5SV cells. The abnormal junctions contained two types of insertions: 1) GT dinucleotides, which are normally removed by integrase during integration, and 2) inserted nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-deficient cells, part of a primer binding site sequence was also detected. The 5\u0027 host-virus junctions in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair enzymes play roles in the 3\u0027-processing reaction and protection of the ends of viral DNA after reverse transcription. We also identified both 5\u0027 and 3\u0027 junctional sequences of the same provirus by inverse PCR and found that only the 3\u0027 junctions were abnormal with aberrant short repeats, indicating that the integration step was partially impaired in these cells. Furthermore, the conserved base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells. Conclusions: These results suggest that DSB repair enzymes are involved in multiple steps including integration and pre-integration steps during retroviral replication.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "資源タイプ(コンテンツの種類)", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_31": {"attribute_name": "フォーマット:mimeタイプ", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "引用", "attribute_value_mlt": [{"subitem_description": "Retrovirology. 6:114 (2009)", "subitem_description_type": "Other"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000273059000001"}]}, "item_6_publisher_4": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "BIOMED CENTRAL LTD"}]}, "item_6_relation_47": {"attribute_name": "PubMed", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "20003485"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://pubmed.ncbi.nlm.nih.gov/20003485", "subitem_relation_type_select": "PMID"}}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.1186/1742-4690-6-114"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1186/1742-4690-6-114", "subitem_relation_type_select": "DOI"}}]}, "item_6_select_64": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1742-4690", "subitem_source_identifier_type": "PISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1742-4690", "subitem_source_identifier_type": "PISSN"}]}, "item_6_source_id_40": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA12051445", "subitem_source_identifier_type": "NCID"}]}, "item_6_text_70": {"attribute_name": "wosonly keywords", "attribute_value_mlt": [{"subitem_text_value": "DEPENDENT PROTEIN-KINASE; VIRUS TYPE-1 INTEGRATION; ATAXIA-TELANGIECTASIA; DAMAGE RESPONSE; ATM ACTIVATION; MRE11-RAD50-NBS1 COMPLEX; REVERSE-TRANSCRIPTASE; HIV-1 REPLICATION; IMMUNODEFICIENCY; ARTEMIS"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "Background: DNA double strand break (DSB) repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. Results: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method based on inverse-and Alu-PCR, we analyzed sequences around 3\u0027 HIV-1 integration sites in ATM, Mre11- and NBS1-deficient cells. Increased abnormal junctions between the HIV-1 provirus and the host DNA were found in these mutant cell lines compared to the complemented cell lines and control MRC5SV cells. The abnormal junctions contained two types of insertions: 1) GT dinucleotides, which are normally removed by integrase during integration, and 2) inserted nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-deficient cells, part of a primer binding site sequence was also detected. The 5\u0027 host-virus junctions in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair enzymes play roles in the 3\u0027-processing reaction and protection of the ends of viral DNA after reverse transcription. We also identified both 5\u0027 and 3\u0027 junctional sequences of the same provirus by inverse PCR and found that only the 3\u0027 junctions were abnormal with aberrant short repeats, indicating that the integration step was partially impaired in these cells. Furthermore, the conserved base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells. Conclusions: These results suggest that DSB repair enzymes are involved in multiple steps including integration and pre-integration steps during retroviral replication."}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Sakurai, Yasuteru", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "8002", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Komatsu, Kenshi", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "8003", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Agematsu, Kazunaga", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "8004", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Matsuoka, Masao", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "8005", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-24"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "DNA_double_strand_break.pdf", "filesize": [{"value": "746.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 746600.0, "url": {"label": "DNA_double_strand_break.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/3918/files/DNA_double_strand_break.pdf"}, "version_id": "be5d2731-8e40-4a8f-91a6-78111554ef3a"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "DNA double strand break repair enzymes function at multiple steps in retroviral infection", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "DNA double strand break repair enzymes function at multiple steps in retroviral infection", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["462"], "permalink_uri": "http://hdl.handle.net/10091/10784", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2010-11-16"}, "publish_date": "2010-11-16", "publish_status": "0", "recid": "3918", "relation": {}, "relation_version_is_last": true, "title": ["DNA double strand break repair enzymes function at multiple steps in retroviral infection"], "weko_shared_id": -1}
DNA double strand break repair enzymes function at multiple steps in retroviral infection
http://hdl.handle.net/10091/10784
http://hdl.handle.net/10091/107849185716e-02a6-4dda-a942-59214827192a
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-11-16 | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | DNA double strand break repair enzymes function at multiple steps in retroviral infection | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
著者 |
Sakurai, Yasuteru
× Sakurai, Yasuteru× Komatsu, Kenshi× Agematsu, Kazunaga× Matsuoka, Masao |
|||||
出版者 | ||||||
出版者 | BIOMED CENTRAL LTD | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | Retrovirology. 6:114 (2009) | |||||
書誌情報 |
Retrovirology 巻 6, 発行日 2009-12-15 |
|||||
内容記述 | ||||||
内容記述タイプ | Other | |||||
内容記述 | (c) 2009 Sakurai et al; licensee BioMed Central Ltd. / This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Background: DNA double strand break (DSB) repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. Results: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method based on inverse-and Alu-PCR, we analyzed sequences around 3' HIV-1 integration sites in ATM, Mre11- and NBS1-deficient cells. Increased abnormal junctions between the HIV-1 provirus and the host DNA were found in these mutant cell lines compared to the complemented cell lines and control MRC5SV cells. The abnormal junctions contained two types of insertions: 1) GT dinucleotides, which are normally removed by integrase during integration, and 2) inserted nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-deficient cells, part of a primer binding site sequence was also detected. The 5' host-virus junctions in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair enzymes play roles in the 3'-processing reaction and protection of the ends of viral DNA after reverse transcription. We also identified both 5' and 3' junctional sequences of the same provirus by inverse PCR and found that only the 3' junctions were abnormal with aberrant short repeats, indicating that the integration step was partially impaired in these cells. Furthermore, the conserved base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells. Conclusions: These results suggest that DSB repair enzymes are involved in multiple steps including integration and pre-integration steps during retroviral replication. | |||||
資源タイプ(コンテンツの種類) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Article | |||||
ISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 1742-4690 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA12051445 | |||||
PubMed | ||||||
識別子タイプ | PMID | |||||
関連識別子 | https://pubmed.ncbi.nlm.nih.gov/20003485 | |||||
関連名称 | 20003485 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1186/1742-4690-6-114 | |||||
関連名称 | 10.1186/1742-4690-6-114 | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
WoS | ||||||
表示名 | Web of Science | |||||
URL | http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000273059000001 |