Item type |
学術雑誌論文 / Journal Article(1) |
公開日 |
2010-12-16 |
タイトル |
|
|
タイトル |
ON THE EXISTENCE OF EMBEDDINGS INTO MODULES OF FINITE HOMOLOGICAL DIMENSIONS |
言語 |
|
|
言語 |
eng |
DOI |
|
|
|
関連識別子 |
https://doi.org/10.1090/S0002-9939-10-10323-2 |
|
|
関連名称 |
10.1090/S0002-9939-10-10323-2 |
キーワード |
|
|
主題 |
Gorenstein ring, Cohen-Macaulay ring, projective dimension, injective dimension, (semi)dualizing module |
資源タイプ |
|
|
資源 |
http://purl.org/coar/resource_type/c_6501 |
|
タイプ |
journal article |
著者 |
Takahashi, Ryo
Yassemi, Siamak
Yoshino, Yuji
|
出版者 |
|
|
出版者 |
AMER MATHEMATICAL SOC |
引用 |
|
|
内容記述 |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. 138(7):2265-2268 (2010) |
書誌情報 |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
巻 138,
号 7,
p. 2265-2268,
発行日 2010-07
|
抄録 |
|
|
内容記述 |
Let R be a commutative Noetherian local ring. We show that R is Gorenstein if and only if every finitely generated R-module can be embedded in a finitely generated R-module of finite projective dimension. This extends a result of Auslander and Bridger to rings of higher Krull dimension, and it also improves a result due to Foxby where the ring is assumed to be Cohen-Macaulay. |
スポンサー |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Let R be a commutative Noetherian local ring. We show that R is Gorenstein if and only if every finitely generated R-module can be embedded in a finitely generated R-module of finite projective dimension. This extends a result of Auslander and Bridger to rings of higher Krull dimension, and it also improves a result due to Foxby where the ring is assumed to be Cohen-Macaulay. |
資源タイプ(コンテンツの種類) |
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
0002-9939 |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA00781790 |
権利 |
|
|
権利情報 |
Copyright (c) 2010 American Mathematical Society |
出版タイプ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
WoS |
|
|
URL |
http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000278512900001 |