ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "593914fd-c9a3-49bb-829d-9e27e1811648"}, "_deposit": {"id": "12032", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12032"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012032"}, "item_10_alternative_title_1": {"attribute_name": "\u305d\u306e\u4ed6\uff08\u5225\u8a00\u8a9e\u7b49\uff09\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "Regularization of differential equations on a Hilhert space and non-associative algebra."}]}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2000-03-30", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "126", "bibliographicPageStart": "111", "bibliographicVolumeNumber": "34", "bibliographic_titles": [{"bibliographic_title": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]}, "item_10_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Laplace operator on a Hilbert space can not even act on the metric function. To overcome this difficult, we defined regularization of Laplacian. In particular, we computed polar coordinate expression of regularized Laplacian which can not do without regularization[2]. We try to rewrite given regularized spherical Laplacian from the point of quantum mechanics on an infinite dimensional space. We eliminate the difficulty comes from infinite dimensional property of the space, by introducing a Jordan algebra, which is non-associative. In finite dimensional case, Jordan algebra has been used to define Dirac kind operator ([5],[10]). We adopt this argument to the infinite dimensional case and define an infinite dimensional Dirac kind operator.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8\uff1amime\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 34(2): 111-126(2000)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]}, "item_10_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00697923", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "03"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "TANABE,  Nobuhiko"}], "nameIdentifiers": [{"nameIdentifier": "36885", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Science34-02-03.pdf", "filesize": [{"value": "539.5 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 539500.0, "url": {"label": "Science34-02-03.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12032/files/Science34-02-03.pdf"}, "version_id": "a13a81fe-d492-470d-a084-6ae8cd82c11b"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Hilbert\u7a7a\u9593\u306e\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e\u6b63\u5247\u5316\u3068\u975e\u7d50\u5408\u4ee3\u6570", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Hilbert\u7a7a\u9593\u306e\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e\u6b63\u5247\u5316\u3068\u975e\u7d50\u5408\u4ee3\u6570"}]}, "item_type_id": "10", "owner": "1", "path": ["1169/1171/1172/1185"], "permalink_uri": "http://hdl.handle.net/10091/10660", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2010-10-06"}, "publish_date": "2010-10-06", "publish_status": "0", "recid": "12032", "relation": {}, "relation_version_is_last": true, "title": ["Hilbert\u7a7a\u9593\u306e\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e\u6b63\u5247\u5316\u3068\u975e\u7d50\u5408\u4ee3\u6570"], "weko_shared_id": null}
  1. 040 理学部
  2. 0402 紀要
  3. 04021 Journal of the Faculty of Science, Shinshu University
  4. Vol. 34

Hilbert空間の微分方程式の正則化と非結合代数

http://hdl.handle.net/10091/10660
3aa35f5b-b64c-4916-ae52-0bc99c9ef59b
名前 / ファイル ライセンス アクション
Science34-02-03.pdf Science34-02-03.pdf (539.5 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2010-10-06
タイトル
タイトル Hilbert空間の微分方程式の正則化と非結合代数
言語
言語 jpn
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
その他(別言語等)のタイトル
その他のタイトル Regularization of differential equations on a Hilhert space and non-associative algebra.
著者 TANABE, Nobuhiko

× TANABE, Nobuhiko

WEKO 36885

TANABE, Nobuhiko

Search repository
出版者
出版者 信州大学理学部
引用
内容記述タイプ Other
内容記述 信州大学理学部紀要 34(2): 111-126(2000)
書誌情報 信州大学理学部紀要

巻 34, 号 2, p. 111-126, 発行日 2000-03-30
抄録
内容記述タイプ Abstract
内容記述 Laplace operator on a Hilbert space can not even act on the metric function. To overcome this difficult, we defined regularization of Laplacian. In particular, we computed polar coordinate expression of regularized Laplacian which can not do without regularization[2]. We try to rewrite given regularized spherical Laplacian from the point of quantum mechanics on an infinite dimensional space. We eliminate the difficulty comes from infinite dimensional property of the space, by introducing a Jordan algebra, which is non-associative. In finite dimensional case, Jordan algebra has been used to define Dirac kind operator ([5],[10]). We adopt this argument to the infinite dimensional case and define an infinite dimensional Dirac kind operator.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0583-063X
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00697923
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:36:31.422880
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio