WEKO3
AND
アイテム
{"_buckets": {"deposit": "f240597a-63d9-4e4b-8470-e8d31b526345"}, "_deposit": {"id": "12989", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12989"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012989"}, "item_10_alternative_title_1": {"attribute_name": "\u305d\u306e\u4ed6\uff08\u5225\u8a00\u8a9e\u7b49\uff09\u306e\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_alternative_title": "Asymptotic Form of Lagrangian Spectrum Function of Turbulence"}]}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1972-07-25", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "225", "bibliographicPageStart": "217", "bibliographicVolumeNumber": "32", "bibliographic_titles": [{"bibliographic_title": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8\u7d00\u8981"}]}]}, "item_10_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Working equation for the Lagrangian spectrum function over the entire range of Lagrangian turbulon frequencies is proposed. The principal assumptions are that the evolution of the state of a selected particle in time forms a Markov process and that the spectrum function is a rapidly decreasing function. The asymptotic form of the spectrum is expressed in the form, E\u2081\u2081(\u03c9) = AL\u003c\u03b5\u003e/\u03c9\u2080\u00b2 exp[-c\u00b2(\u03c9/\u03c9\u221e)\u00b2] / 1+(\u03c9/\u03c9\u2080)\u00b2 where AL is the universal constant. AL \u2248 c/4. 4. \u003c\u03b5\u003e is the kinetic energy dissipation rate. \u03c9 is the Lagrangian turbulon frequency. The subscripts, 0 and \u221e, mean the largest and the smallest turbulon respectively. This form behaves like \u03c9\u207b\u00b2 in the inertial range and as an exponential decay in the viscous range. The result is applied to the estimation of the energy dissipation by solid particles suspended in a turbulent fluid.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8\uff1amime\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8\u7d00\u8981 32: 217-225 (1972)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4fe1\u5dde\u5927\u5b66\u5de5\u5b66\u90e8"}]}, "item_10_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AN00121228", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "15"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u4f59\u8d8a, \u6b63\u4e00\u90ce"}], "nameIdentifiers": [{"nameIdentifier": "39779", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Engineering32-15.pdf", "filesize": [{"value": "415.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 415600.0, "url": {"label": "Engineering32-15.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12989/files/Engineering32-15.pdf"}, "version_id": "57eee17a-272f-4648-adc2-6048848c4ac0"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "\u4e71\u308c\u306eLagrange\u30b9\u30da\u30af\u30c8\u30eb\u306e\u6f38\u8fd1\u5f62", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "\u4e71\u308c\u306eLagrange\u30b9\u30da\u30af\u30c8\u30eb\u306e\u6f38\u8fd1\u5f62"}]}, "item_type_id": "10", "owner": "1", "path": ["1221/1223/1224/1275"], "permalink_uri": "http://hdl.handle.net/10091/3188", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2009-06-30"}, "publish_date": "2009-06-30", "publish_status": "0", "recid": "12989", "relation": {}, "relation_version_is_last": true, "title": ["\u4e71\u308c\u306eLagrange\u30b9\u30da\u30af\u30c8\u30eb\u306e\u6f38\u8fd1\u5f62"], "weko_shared_id": null}
乱れのLagrangeスペクトルの漸近形
http://hdl.handle.net/10091/3188
006240f4-c96d-46ac-a29a-5bbd76af0ab9
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2009-06-30 | |||||
タイトル | ||||||
タイトル | 乱れのLagrangeスペクトルの漸近形 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
その他(別言語等)のタイトル | ||||||
その他のタイトル | Asymptotic Form of Lagrangian Spectrum Function of Turbulence | |||||
著者 |
余越, 正一郎
× 余越, 正一郎 |
|||||
出版者 | ||||||
出版者 | 信州大学工学部 | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 信州大学工学部紀要 32: 217-225 (1972) | |||||
書誌情報 |
信州大学工学部紀要 巻 32, p. 217-225, 発行日 1972-07-25 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Working equation for the Lagrangian spectrum function over the entire range of Lagrangian turbulon frequencies is proposed. The principal assumptions are that the evolution of the state of a selected particle in time forms a Markov process and that the spectrum function is a rapidly decreasing function. The asymptotic form of the spectrum is expressed in the form, E₁₁(ω) = AL<ε>/ω₀² exp[-c²(ω/ω∞)²] / 1+(ω/ω₀)² where AL is the universal constant. AL ≈ c/4. 4. <ε> is the kinetic energy dissipation rate. ω is the Lagrangian turbulon frequency. The subscripts, 0 and ∞, mean the largest and the smallest turbulon respectively. This form behaves like ω⁻² in the inertial range and as an exponential decay in the viscous range. The result is applied to the estimation of the energy dissipation by solid particles suspended in a turbulent fluid. | |||||
資源タイプ(コンテンツの種類) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0037-3818 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AN00121228 |