ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "adc9483f-8e25-4e14-ade4-c216b6d92b0b"}, "_deposit": {"id": "12989", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12989"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012989", "sets": []}, "author_link": ["39779"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1972-07-25", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "225", "bibliographicPageStart": "217", "bibliographicVolumeNumber": "32", "bibliographic_titles": [{"bibliographic_title": "信州大学工学部紀要"}]}]}, "item_10_description_20": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Working equation for the Lagrangian spectrum function over the entire range of Lagrangian turbulon frequencies is proposed. The principal assumptions are that the evolution of the state of a selected particle in time forms a Markov process and that the spectrum function is a rapidly decreasing function. The asymptotic form of the spectrum is expressed in the form, E₁₁(ω) = AL\u003cε\u003e/ω₀² exp[-c²(ω/ω∞)²] / 1+(ω/ω₀)² where AL is the universal constant. AL ≈ c/4. 4. \u003cε\u003e is the kinetic energy dissipation rate. ω is the Lagrangian turbulon frequency. The subscripts, 0 and ∞, mean the largest and the smallest turbulon respectively. This form behaves like ω⁻² in the inertial range and as an exponential decay in the viscous range. The result is applied to the estimation of the energy dissipation by solid particles suspended in a turbulent fluid.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "資源タイプ(コンテンツの種類)", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "フォーマット:mimeタイプ", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "引用", "attribute_value_mlt": [{"subitem_description": "信州大学工学部紀要 32: 217-225 (1972)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "信州大学工学部"}]}, "item_10_select_64": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0037-3818", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AN00121228", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "15"}]}, "item_1627890569677": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "余越,  正一郎", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "39779", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Engineering32-15.pdf", "filesize": [{"value": "415.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 415600.0, "url": {"label": "Engineering32-15.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12989/files/Engineering32-15.pdf"}, "version_id": "beed3088-a19a-496d-8fec-f01919278769"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "乱れの Lagrange スペクトルの漸近形", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "乱れの Lagrange スペクトルの漸近形", "subitem_title_language": "ja"}, {"subitem_title": "Asymptotic Form of Lagrangian Spectrum Function of Turbulence", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["1275"], "permalink_uri": "http://hdl.handle.net/10091/3188", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-06-30"}, "publish_date": "2009-06-30", "publish_status": "0", "recid": "12989", "relation": {}, "relation_version_is_last": true, "title": ["乱れの Lagrange スペクトルの漸近形"], "weko_shared_id": -1}
  1. 060 工学部
  2. 0602 紀要
  3. 06021 信州大学工学部紀要
  4. Vol. 32

乱れの Lagrange スペクトルの漸近形

http://hdl.handle.net/10091/3188
http://hdl.handle.net/10091/3188
006240f4-c96d-46ac-a29a-5bbd76af0ab9
名前 / ファイル ライセンス アクション
Engineering32-15.pdf Engineering32-15.pdf (415.6 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2009-06-30
タイトル
言語 ja
タイトル 乱れの Lagrange スペクトルの漸近形
タイトル
言語 en
タイトル Asymptotic Form of Lagrangian Spectrum Function of Turbulence
言語
言語 jpn
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 余越, 正一郎

× 余越, 正一郎

WEKO 39779

ja 余越, 正一郎

Search repository
出版者
出版者 信州大学工学部
引用
内容記述タイプ Other
内容記述 信州大学工学部紀要 32: 217-225 (1972)
書誌情報 信州大学工学部紀要

巻 32, p. 217-225, 発行日 1972-07-25
抄録
内容記述タイプ Abstract
内容記述 Working equation for the Lagrangian spectrum function over the entire range of Lagrangian turbulon frequencies is proposed. The principal assumptions are that the evolution of the state of a selected particle in time forms a Markov process and that the spectrum function is a rapidly decreasing function. The asymptotic form of the spectrum is expressed in the form, E₁₁(ω) = AL<ε>/ω₀² exp[-c²(ω/ω∞)²] / 1+(ω/ω₀)² where AL is the universal constant. AL ≈ c/4. 4. <ε> is the kinetic energy dissipation rate. ω is the Lagrangian turbulon frequency. The subscripts, 0 and ∞, mean the largest and the smallest turbulon respectively. This form behaves like ω⁻² in the inertial range and as an exponential decay in the viscous range. The result is applied to the estimation of the energy dissipation by solid particles suspended in a turbulent fluid.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0037-3818
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00121228
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:13:32.918502
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3