ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "35e8f3a3-b9da-49fe-9c29-c1c36c83ae85"}, "_deposit": {"id": "12043", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "12043"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00012043"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1998-03-30", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "67", "bibliographicPageStart": "61", "bibliographicVolumeNumber": "32", "bibliographic_titles": [{"bibliographic_title": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]}, "item_10_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "In [2] (\u221e-p)-form on a k-th Sobolev space Wk(X), X a compact (spin) manifold, was defined by using Sobolev duality. Integrals of (\u221e-p)-form on an (\u221e-p)-form on a cube in Wk(X) were defined without using measure. We show when the lenghth of sides of the cube tends to \u221e, infinite dimensional Gaussian integral that is principal on application converges if and only if the cube is imbedded in Wk(X), k\u003c-d+1/2.", "subitem_description_type": "Abstract"}]}, "item_10_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_10_description_31": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8\uff1amime\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 32(2): 61-67(1998)", "subitem_description_type": "Other"}]}, "item_10_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]}, "item_10_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0583-063X", "subitem_source_identifier_type": "ISSN"}]}, "item_10_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00697923", "subitem_source_identifier_type": "NCID"}]}, "item_10_text_66": {"attribute_name": "sortkey", "attribute_value_mlt": [{"subitem_text_value": "01"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "ASADA,  Akira"}], "nameIdentifiers": [{"nameIdentifier": "36909", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "TANABE,  Nobuhiko"}], "nameIdentifiers": [{"nameIdentifier": "36910", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Science32-02-01.pdf", "filesize": [{"value": "226.0 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 226000.0, "url": {"label": "Science32-02-01.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/12043/files/Science32-02-01.pdf"}, "version_id": "32382fdc-18c8-453d-b9dc-00627f16ae5b"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space"}]}, "item_type_id": "10", "owner": "1", "path": ["1169/1171/1172/1187"], "permalink_uri": "http://hdl.handle.net/10091/10651", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2010-10-06"}, "publish_date": "2010-10-06", "publish_status": "0", "recid": "12043", "relation": {}, "relation_version_is_last": true, "title": ["A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space"], "weko_shared_id": null}
  1. 040 理学部
  2. 0402 紀要
  3. 04021 Journal of the Faculty of Science, Shinshu University
  4. Vol. 32

A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space

http://hdl.handle.net/10091/10651
18780617-a5bd-40ef-84a6-e5c1088e239f
名前 / ファイル ライセンス アクション
Science32-02-01.pdf Science32-02-01.pdf (226.0 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2010-10-06
タイトル
タイトル A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 ASADA, Akira

× ASADA, Akira

WEKO 36909

ASADA, Akira

Search repository
TANABE, Nobuhiko

× TANABE, Nobuhiko

WEKO 36910

TANABE, Nobuhiko

Search repository
出版者
出版者 信州大学理学部
引用
内容記述タイプ Other
内容記述 信州大学理学部紀要 32(2): 61-67(1998)
書誌情報 信州大学理学部紀要

巻 32, 号 2, p. 61-67, 発行日 1998-03-30
抄録
内容記述タイプ Abstract
内容記述 In [2] (∞-p)-form on a k-th Sobolev space Wk(X), X a compact (spin) manifold, was defined by using Sobolev duality. Integrals of (∞-p)-form on an (∞-p)-form on a cube in Wk(X) were defined without using measure. We show when the lenghth of sides of the cube tends to ∞, infinite dimensional Gaussian integral that is principal on application converges if and only if the cube is imbedded in Wk(X), k<-d+1/2.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0583-063X
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00697923
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:36:14.540186
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio